24 research outputs found

    DANSSino: a pilot version of the DANSS neutrino detector

    Full text link
    DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20x20x100 ccm), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.Comment: 16 pages, 11 figures, 3 tables. arXiv admin note: substantial text overlap with arXiv:1304.369

    Search for sterile neutrinos at the DANSS experiment

    Full text link
    DANSS is a highly segmented 1~m3{}^3 plastic scintillator detector. Its 2500 one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS detector is placed under an industrial 3.1~GWth\mathrm{GW_{th}} reactor of the Kalinin Nuclear Power Plant 350~km NW from Moscow. The distance to the core is varied on-line from 10.7~m to 12.7~m. The reactor building provides about 50~m water-equivalent shielding against the cosmic background. DANSS detects almost 5000 ν~e\widetilde\nu_e per day at the closest position with the cosmic background less than 3%\%. The inverse beta decay process is used to detect ν~e\widetilde\nu_e. Sterile neutrinos are searched for assuming the 4ν4\nu model (3 active and 1 sterile ν\nu). The exclusion area in the Δm142,sin22θ14\Delta m_{14}^2,\sin^22\theta_{14} plane is obtained using a ratio of positron energy spectra collected at different distances. Therefore results do not depend on the shape and normalization of the reactor ν~e\widetilde\nu_e spectrum, as well as on the detector efficiency. Results are based on 966 thousand antineutrino events collected at 3 distances from the reactor core. The excluded area covers a wide range of the sterile neutrino parameters up to sin22θ14<0.01\sin^22\theta_{14}<0.01 in the most sensitive region.Comment: 10 pages, 13 figures, version accepted for publicatio

    WIMP-nucleon cross-section results from the second science run of ZEPLIN-III

    Get PDF
    We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1,344 kg.days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8E-8 pb near 50 GeV/c^2 WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9E-8 pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0E-3 pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach

    Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    Get PDF
    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure

    Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering

    Get PDF
    We present an experimental study of single electron emission in ZEPLIN-III, a two-phase xenon experiment built to search for dark matter WIMPs, and discuss applications enabled by the excellent signal-to-noise ratio achieved in detecting this signature. Firstly, we demonstrate a practical method for precise measurement of the free electron lifetime in liquid xenon during normal operation of these detectors. Then, using a realistic detector response model and backgrounds, we assess the feasibility of deploying such an instrument for measuring coherent neutrino-nucleus elastic scattering using the ionisation channel in the few-electron regime. We conclude that it should be possible to measure this elusive neutrino signature above an ionisation threshold of \sim3 electrons both at a stopped pion source and at a nuclear reactor. Detectable signal rates are larger in the reactor case, but the triggered measurement and harder recoil energy spectrum afforded by the accelerator source enable lower overall background and fiducialisation of the active volume

    ZE3RA: The ZEPLIN-III Reduction and Analysis package

    Get PDF
    ZE3RA is the software package responsible for processing the raw data from the ZEPLIN-III dark matter experiment and its reduction into a set of parameters used in all subsequent analyses. The detector is a liquid xenon time projection chamber with scintillation and electroluminescence signals read out by an array of 31 photomultipliers. The dual range 62-channel data stream is optimised for the detection of scintillation pulses down to a single photoelectron and of ionisation signals as small as those produced by single electrons. We discuss in particular several strategies related to data filtering, pulse finding and pulse clustering which are tuned using calibration data to recover the best electron/nuclear recoil discrimination near the detection threshold, where most dark matter elastic scattering signatures are expected. The software was designed assuming only minimal knowledge of the physics underlying the detection principle, allowing an unbiased analysis of the experimental results and easy extension to other detectors with similar requirements. ©2011 IOP Publishing Ltd and SISSA
    corecore